
Pd(II)-katalysierte CH-Aktivierung im Vergleich zu C-C-Kreuzkupplungsreaktionen: Vielseitigkeit und Praxistauglichkeit

C-C Kreuzkupplung

Ein Halogen-Alkan/Alken (Abgangsgruppe X) ist Voraussetzung für Palladiumkatalysierte Reaktionen. Damit wird der Pd-Komplex gebildet: Heck-Kupplung, Kreuzkupplungen (Kumada, Stille, Negishi, Suzuki– Miyaura, Hiyama), Tsuji–Trost Allylierung, oder C-N-Kupplungen wie die Buchwald–Hartwig-Aminierung.

Ganz anders die Palladium(II)-katalysierten CH-Aktivierung:

C-H Aktivierung

Hier gilt es regioselektiv den Pd-Komplex zu bilden, ohne dass eine Abgangsgruppe vor-handen ist. Das Proton wird zur Abgangsgruppe!

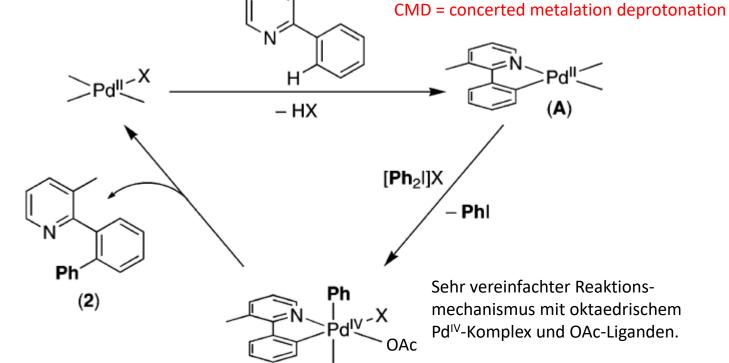
Wie kann man diese Reaktion so gestallten, dass nur ein bestimmtes Proton (Regioselektivität) entfernt wird und alle anderen nicht angegriffen werden?

Deuterierung und funktionalisierung unaktivierter CH-Gruppen

Reaktivität von Alkyl-Gruppen: Beim Pd-katalysierten H/D-Austausch zeigen alle sp³C-H-Gruppen vergleichbare Reaktivität

Bei der **gelenkten Metallierung** (*directed ortho metalation*) erfolgt die Deprotonierung mit einer starken Base und das Metall koordiniert an das benachbarte Heteroatom.

Hohe Regioselektivität
Harsche Reaktionsbedingungen (stöchiometrisch Base)
Nur sp²-CH


Katalytisch und hohe Regioselektivität für tert. CH Nur oxidative Funktionalisierung

Christina White JACS 2017, 14586

Pd-katalysierte CH-Aktivierung: Transition-metal-catalyzed, coordination-assisted C(sp²)-H functionalization

Regioselektive CH-Aktivierung bei der **Sanford-Oxidation** (Melanie Sanford, Michigan)
Der Stickstoff koordiniert hier das Pd und lenkt die Regioselektivität dieser **C(sp²)-H-Aktivierung.**

Wenige Jahre später werden dirigierende Pyridin-Ringe bereits für die Bildung von C-C-Bindungen genutzt.

OAc

Chemie Philipps

C(sp³)-H Aktivierung von Val: "Direct Borylation"

Shi et al. ACIE2014, 3899

Bis(pinakolato)diboran reagiert hier direkt mit dem sp² oder sp³ CH und braucht kein Iodid, welches über einen Metall-Halogen-Austausch zum Boronsäureester für die Kreuzkupplung (unten) umgesetzt wird.

$$\begin{array}{c|c}
O \\
N \\
CO_2Me
\end{array}$$

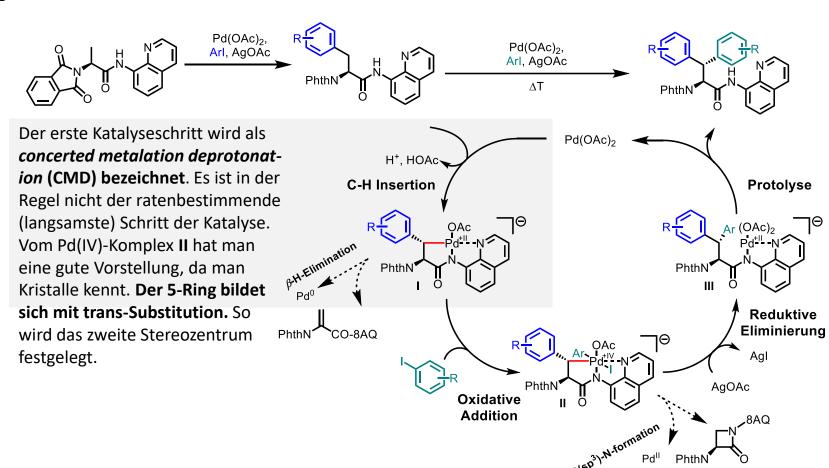
Solvent: MeCN, PhCN O₂, 80 °C

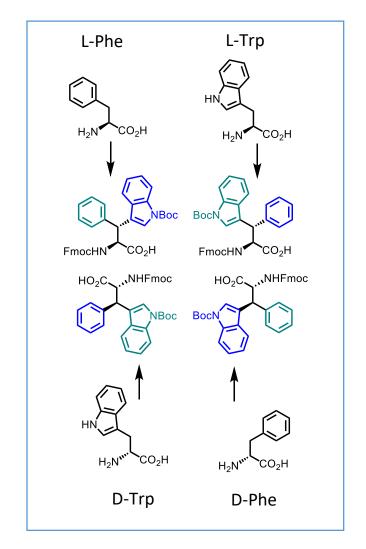
$$N$$
 N
 CO_2Me
 $S.0.$

Nur eine diastereotope Methylgruppe (Me^{proS}) des Edukts wird funktionalisiert

Ausbeute 70% d.r. 83:17

Die zwei ortho-CH-Gruppen des Edukts sind homotop und daher nicht unterscheidbar


Ausbeute 80%


Zum Vergleich die klassische Synthese von Boronsäureestern aus halogeniertem Vorl#ufer und die para-Arylierung von Phe als Suzuki-Miyaura-Kreuzkupplung.

Sequentielle C(sp³)–H Aktivierung für die Synthese β -verzweigter Diarylaminosäuren mit 10 π -Seitenkette

Dirigierende Gruppe: 8-Aminochinolin (**8AQ**) eignet sich als dirigierende Gruppe auch für die "schwierigen Fälle", z. B. wenn Arl ein großer $10-\pi$ -Elektronen-Aromat ist.

Schutzgruppen-Strategie: Die Phthalimid-Schutzgruppe (**Phth**) verhindert die Koordination des Metalls an das N der Aminosäure. (Wie wird Phth eingeführt, wie abgespalten?)

CH-Aktivierung in der Synthese eines Peptid-Naturstoffs

Hypervalente lodverbindungen wie das Mesityliodonium(III)Salz sind reaktiver als einfache Aryliodide

Larock Indol-Synthese mit Propargylglycin

COMU ist ein aktiviertes Uronium-Salz für die Amidkondensation (Funktion wie HBTU etc)

Die CH-Aktivierung toleriert auch hochfunktionalisierte Edukte

1. INTRODUCTION

Peptide therapeutics have recently attracted broad attention from the pharmaceutical industry because of their superior specificity for their targets over small molecules. 1-3 The number of approved peptide drugs has also steadily increased in the past decade.1 Therefore, postsynthetic modification of peptides has emerged as a significant task of current interests.^{4–9} For example, the "tag-and-modify" approach has been developed by Davis to covalently modify peptides and proteins through a diverse range of transition metal-catalyzed C–C bond-forming reactions. 6,10 Direct C(sp²)–H functionalization of inherent phenylalanine and tryptophan moieties has also been elegantly exploited to modify the structures of bioactive small peptides. 11-13 It has been long recognized that site-selective functionalization of various inert $C(sp^3)$ -H bonds in a peptide side chain will greatly enrich the toolbox for postsynthetic modification of peptides. Despite the significant progress in developing $C(sp^3)$ —H activation reactions of amino acids using directed C-H activation (Figure 1a), 14-24 siteselective functionalizations of alkyl side chains in peptides without installing an external auxiliary remains to be developed, an attribute that is essential for postsynthetic modification of a broad range of peptides.

- a) Bisherige Strategie mit dirigierender Gruppe
- b) Die N-Acetyl-Aminosäure ohne weitere DG
- c) Carboxylat des Peptids als DG

a C-H functionalization of amino acids using a directing group (DG)

b C-H activation accelerated by mono-N-protected amino acid (MPAA) ligands

c C-H activation in peptides directed by the native C-terminus amino acid moiety

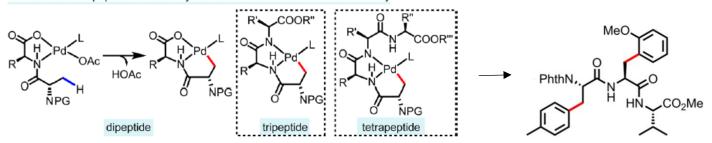


Figure 1. Site-selective C–H functionalization. (a) $C(sp^3)$ –H functionalization of amino acids using specifically designed directing groups. (b) C–H activation by Pd(II)/amino acid complexes. (c) $C(sp^3)$ –H activation of peptides at the N-terminus. Phth = phthaloyl, DG = directing group, Subs = substrate, NPG = protected amino group.